首页|基于注意力机制的CNN-LSTM的电商推荐模型研究

基于注意力机制的CNN-LSTM的电商推荐模型研究

扫码查看
个性化推荐在电商平台上对于提升用户使用体验以及商品销量方面有巨大帮助,利用电商平台上用户的历史行为数据可以分析出用户的兴趣点,针对用户兴趣进行推荐和展示,能够很好地提升用户体验和平台的营销效果.传统的推荐系统往往使用内容相似性的推荐和协同过滤算法进行推荐,这些方法在大数据量、稀疏的用户历史行为数据时效果并不好.为了解决这些问题,提出基于注意力机制的CNN-LSTM深度学习模型,并通过对比实验,验证了该模型的有效性.实验结果表明,基于注意力机制的CNN-LSTM模型对于提升推荐效果有明显帮助.
Research on e-commerce recommendation model based on CNN-LSTM
Personalized recommendation on the e-commerce platform is of great help in improving the user experience as well as the sales of goods,using the historical behavioral data of the users on the e-commerce platform can analyze the user's point of in-terest,and recommending and displaying for the user's interest can well improve the user experience and the marketing effect of the platform.Traditional recommender systems often use content similarity recommendation and collaborative filtering algorithms for recommendation,and these methods do not work well with large data volumes and sparse historical user behavior data.In order to solve these problems,a CNN-LSTM deep learning model based on the attention mechanism is proposed,and the effectiveness of the model is verified through comparative experiments.The experimental results show that the proposed model can solve some prob-lems in the traditional recommender system,and it is significantly helpful to improve the recommendation effect.

e-commerce recommendation systemdeep learningconvolutional neural networklong short-term memory network

谷云朋

展开 >

河南理工大学计算机科学与技术学院,焦作 454000

电商推荐系统 深度学习 卷积神经网络 长短期记忆网络

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(21)