首页|基于改进的ResNet-50深度学习的肺结节检测及其云端系统开发

基于改进的ResNet-50深度学习的肺结节检测及其云端系统开发

扫码查看
为减少医生在分析肺部CT图像时因主观判断而导致误诊或漏诊,通过对比ResNet-18、ResNet-34、ResNet-50和VGG16四种卷积神经网络模型在肺部图像分类任务中的应用效果,最终确定ResNet-50作为基础训练模型,并利用迁移学习优化该模型以进一步提高其性能.实验结果表明,改进的ResNet-50模型能显著提高肺结节检测及分类的准确率,达到89.55%,明显优于VGG16的52.27%.此外,开发了一个基于Streamlit的云端肺部图像可视化诊断系统,用户通过界面上传肺部CT图像,系统便会自动检测肺结节并输出分类结果,其操作简便,有助于医生快速诊断和患者及时发现病情.
Pulmonary nodule detection based on improved ResNet-50 and its cloud system development
To reduce the misdiagnosis or missed diagnosis caused by subjective judgment when doctors analyze lung CT im-ages,the application effects of four convolutional neural network models,namely ResNet-18,ResNet-34,ResNet-50,and VGG16,in lung image classification tasks were compared.Ultimately,ResNet-50 was determined as the base training model,and transfer learning was used to optimize this model to further enhance its performance.The experimental results show that the improved ResNet-50 model significantly increases the accuracy of pulmonary nodule detection and classification,reaching 89.55%,which is significantly superior to 52.27%achieved by VGG16.Additionally,a cloud-based pulmonary image visualization diagnostic system was developed using Streamlit.Users can upload lung CT images through the interface,and the system will automatically detect pul-monary nodules and output classification results.This system is easy to operate and assists doctors in making quick diagnoses and patients in timely detection of their conditions.

transfer learningResNet-50Pulmonary nodule detectionLung CT imagesStreamlitcloud system

赵乘蔚、张超群、秦唯栋、易云恒

展开 >

广西民族大学人工智能学院,南宁 530006

重庆安全技术职业学院网络与信息安全学院,重庆 404102

西南交通大学希望学院信息工程系,成都 610000

迁移学习 ResNet-50 肺结节检测 肺部CT图像 Streamlit 云端系统

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(21)