首页|基于改进YOLOv8的血细胞检测

基于改进YOLOv8的血细胞检测

扫码查看
基于YOLOv8目标检测框架,提出了一种改进的血细胞检测方法.引入SIoU损失函数,能够更好地处理血细胞检测中的目标物体形状偏斜问题,提高检测精度.引入FasterNet Block模块,通过优化卷积操作和特征融合策略,提高了特征提取的效率和精度.在公开的血细胞图像数据集上进行了对比实验.实验结果表明,对比原有模型,改进方法在多个评价指标上均取得了显著的性能提升.平均精度(mAP)提高了2.1个百分点.检测速度提高了23.2 ms.
Blood cell detection based on improved YOLOv8
Based on the YOLOv8 target detection framework,an improved blood cell detection method is proposed.The SIOU loss function is introduced,which can better deal with the skewed shape of the target object in blood cell detection and improve the detection accuracy.The FasterNet Block module is introduced to improve the efficiency and accuracy of feature extraction by opti-mizing the convolution operation and feature fusion strategy.Comparison experiments are conducted on the publicly available blood cell image dataset.The experimental results show that compared with the original model,the improved method achieves significant performance improvement in several evaluation indexes,with an increase of 2.1 percentage point in the mean accuracy(mAP)and 23.2 ms in the detection speed.

blood cell testingYOLOv8SIoU loss functionFasterNet blockdeep learning

李昊东、李小伟、高彦臣

展开 >

山东交通学院轨道交通学院,济南 250000

血细胞检测 YOLOv8 SIoU损失函数 FasterBlock模块 深度学习

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(22)