首页|融入Cat映射与高斯变异的黑猩猩优化算法及其应用

融入Cat映射与高斯变异的黑猩猩优化算法及其应用

扫码查看
针对标准黑猩猩优化算法在寻优时出现的初始种群分布不均匀、个体适应性差与易陷入局部最优等问题,提出一种改进的黑猩猩算法(CGChOA)应用于求解函数优化问题.首先,利用混沌Cat映射产生黑猩猩种群的初始位置,以丰富种群多样性;其次,引入基于余弦变化规律的收敛因子,平衡算法的全局探索和局部开发能力;最后,对最佳搜索位置的黑猩猩的个体执行高斯变异,从而避免算法陷入局部最优.通过10个基准测试函数与2个工程应用问题的对比实验验证了算法的优越性.
Chimpanzee optimization algorithm incorporating Cat mapping and Gauss mutation and its application
A modified Chimpanzee Algorithm(CGChOA)is proposed to address the issues of uneven initial population distri-bution,poor individual adaptability,and susceptibility to local optima that arise during the optimization process of the standard Chimpanzee optimization algorithm.Firstly,using chaotic Cat mapping to generate the initial position of the chimpanzee population to enrich population diversity;Secondly,a convergence factor based on the cosine variation law is introduced to balance the global exploration and local development capabilities of the algorithm;Finally,Gaussian mutation is performed on the individuals of chim-panzees at the best search location to avoid the algorithm falling into local optima.The superiority of our algorithm was verified through comparative experiments of 10 benchmark test functions and 2 engineering application problems.

Chimpanzee optimization algorithmCat mappingconvergence factorGaussian variationsurvival of the fittest

鲁小桐、陈丽敏、王东岩、王一荻、沈越

展开 >

牡丹江师范学院数学科学学院,牡丹江 157009

牡丹江师范学院应用数学研究所,牡丹江 157009

牡丹江师范学院计算机与信息技术学院,牡丹江 157009

黑猩猩优化算法 Cat映射 收敛因子 高斯变异 优胜劣汰

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(22)