首页|基于改进YOWO的人体行为识别算法

基于改进YOWO的人体行为识别算法

扫码查看
提出了改进的YOWO行为识别算法——YOWO-Uni,该算法继承YOWO算法的框架,重构YOWO算法的各部分:首先,将3D网络分支中的3D-ResNext-101替换成UniFormer-XS,增强时序信息提取能力;其次,在2D网络分支中添加LSKA注意力机制,强化空间特征提取能力;再次,采用轻量化Ghost卷积重构通道融合注意力模块,减少冗余,降低参数量;最后,采用EIoU损失函数提高边界框回归的稳定性.在UCF101-24和J-HMDB-21数据集上的实验结果表明,YOWO-Uni有效减少了模型复杂度,并提高了模型的表达能力.
Human action recognition algorithm based on improved YOWO
This paper introduces an enhanced behavioral recognition algorithm,YOWO-Uni,which inherits the framework of the YOWO algorithm but reconfigures its components for improved performance.Firstly,the 3D network branch's 3D-ResNext-101 is substituted with UniFormer-XS,thereby augmenting the algorithm's capability to extract temporal information.Secondly,the LSKA attention mechanism is incorporated into the 2D network branch,enhancing the extraction of spatial features.Further-more,lightweight Ghost convolutions are employed to reconstruct the channel fusion attention module,effectively reducing redun-dancy and lowering the model's parameter count.Lastly,the EIOU loss function is adopted to bolster the stability of bounding box regression.Experimental results on the UCF101-24 and J-HMDB-21 datasets affirm that YOWO-Uni significantly mitigates model complexity while concurrently elevating its representational capacity.

YOWOhuman action recognitionattention mechanismGhost convolutionloss function

聂嘉骏、靳红雨

展开 >

中国人民警察大学研究生院,廊坊 065000

中国人民警察大学警务装备技术学院,廊坊 065000

YOWO 人体行为识别 注意力机制 Ghost 损失函数

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(22)