首页|基于改进Swin Transformer的壁画修复算法

基于改进Swin Transformer的壁画修复算法

扫码查看
针对壁画因为自然、人为破坏等因素所产生的损坏,传统的图像修复方法无法获得图像的高级语义信息,常规的基于深度学习的方法又存在边缘模糊以及大面积修复效果不佳的情况.为了更加合理的恢复破损壁画的原貌,利用传统卷积的局部特征提取能力以及Swin Transformer的全局结构理解能力,设计了带门控的上下文编解码器,最终构建了一个基于Swin Transformer的两阶段生成对抗网络.实验结果表明,修复效果在主观和客观情况下均优于当前主流算法.
Mural restoration algorithm based on improved Swin Transformer
Addressing the damage caused to murals by natural factors and human destruction,traditional image restoration methods fail to capture the advanced semantic information of the images,while conventional deep learning-based methods often re-sult in blurred edges and poor restoration effects for large-scale damages.To more reasonably restore the original appearance of damaged murals,a context encoder-decoder is designed by leveraging the local feature extraction capability of traditional convolu-tions and the global structural understanding of the Swin Transformer.Ultimately,a two-stage generative adversarial network based on Swin Transformer is constructed.Experimental results show that,the restoration effect outperforms current mainstream algo-rithms both subjectively and objectively.

cultural relic protectionimage restorationSwin Transformer

严杰

展开 >

西南交通大学计算机与人工智能学院,成都 611700

文物保护 图像修复 Swin Transformer

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(22)