首页|基于U-Net对乳腺医学图像分割算法的优化

基于U-Net对乳腺医学图像分割算法的优化

扫码查看
针对传统U-Net网络对乳腺癌变分割进行研究,报告该网络在图像分割上有一定的效果,然而,复杂的超声模式和周围组织细胞的粘连使得这些简单框架难以在乳腺超声图像上实现理想的分割结果.因此对U-Net结构进行了引入极化自注意力机制(PSA)以及自校准卷积(SCConv)的改进,设计出了更优的网络架构.PSA通过在像素级别上动态调整特征图的权重,SCConv能够动态地调整卷积核的权重,从而更好地捕捉和表示输入图像的局部和全局信息.
Optimization of breast medical image segmentation algorithm based on U-Net
A study of the traditional U-Net network for breast cancer segmentation reported that the network is effective in im-age segmentation,however,the complex ultrasound patterns and the adhesion of the surrounding tissue cells make it difficult for these simple frameworks to achieve the desired segmentation results on breast ultrasound images.Therefore the U-Net structure was improved by introducing the polarized self-attention mechanism(PSA)as well as self-calibrated convolution(SCConv)to de-sign a better network architecture.PSA dynamically adjusts the weights of the feature map by at the pixel level and SCConv is able to dynamically adjust the weights of the convolution kernel to better capture and represent the local and global information of the in-put image.

U-Netbreast ultrasound imagesPSASCConv

张玉琴

展开 >

西安石油大学计算机学院,西安 710000

U-Net 乳腺超声图像 PSA SCConv

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(22)