首页|融合结构和语义特征的跨语言实体对齐方法

融合结构和语义特征的跨语言实体对齐方法

扫码查看
跨语言实体对齐在多语言环境中面临诸多挑战,尤其是在长尾实体邻居稀缺和结构信息有限的情况下,单一结构特征的使用限制了对齐的准确性.为解决这一问题,设计了一种融合结构和语义特征的跨语言实体对齐方法.具体而言,利用多语言预训练模型生成语义嵌入作为初始实体特征;随后,通过图神经网络提取实体的结构特征,并运用高速门控机制整合语义与结构信息,以提升实体表示的区分能力.实验结果表明,在跨语言数据集ZH-EN、JA-EN和FR-EN上,Hits@1评价指标分别达到了0.858、0.918和0.941,显著优于传统基线模型,所提方法展现出更高的对齐性能.
A cross-lingual entity alignment method integrating structural and semantic features
Cross-lingual entity alignment in multilingual environments faces numerous challenges,particularly when long-tail entity neighbors are sparse and structural information is limited,which restricts alignment accuracy.To address this issue,a method integrating both structural and semantic features for cross-lingual entity alignment is designed.Specifically,semantic em-beddings are generated using a multilingual pre-trained model as the initial entity features.Subsequently,structural features are extracted through a graph neural network,and a high-speed gating mechanism is employed to integrate both semantic and struc-tural information,enhancing the discriminative ability of entity representations.Experimental results demonstrate that on cross-lingual datasets ZH-EN,JA-EN,and FR-EN,the Hits@1 evaluation metrics reached 0.858,0.918,and 0.941,respectively,signifi-cantly outperforming traditional baseline models and showcasing superior alignment performance.

entity alignmentknowledge graphgraph neural networksemantic learning

罗燕、姜长三、曾桢

展开 >

贵州财经大学信息学院,贵阳 550025

武汉大学大数据研究院,武汉 430072

实体对齐 知识图谱 图神经网络 语义学习

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(22)