首页|基于VAE-LSTM的水质多变量时序数据异常检测研究

基于VAE-LSTM的水质多变量时序数据异常检测研究

扫码查看
随着物联网的普及,各个应用领域对多变量时序数据处理需求增加.水质监测涉及多种参数(如温度、pH值、溶解氧、电导率),需要实时监测并记录其变化.这些数据具有高维度和复杂的时间依赖性.针对这样的数据特征,提出了一种基于变分自编码器和长短期记忆的多变量时间序列异常检测方法,通过训练VAE和LSTM捕捉数据的分布特征和时间依赖性.实验结果显示,在物联网水质监测数据集上,该方法达到了88%的F1分数,表现出优异的异常检测性能.
Research on anomaly detection of multivariate time series data based on VAE-LSTM
With the popularity of the Internet of Things,more and more application areas need to process multivariate time se-ries data.This type of data is characterized by multiple simultaneous dimensions and complex temporal dependence.Water quality monitoring is one of the typical application scenarios,and a variety of water quality parameters(such as temperature,pH,dissolved oxygen,conductivity,etc.)need to be monitored and recorded in real time.These data are not only massive,but also have high di-mensions and strong time series correlations,which are difficult for traditional detection methods to handle.In order to solve this challenge,this paper proposes a VAE-LSTM multivariate time series anomaly detection method,which captures the latent distribu-tion characteristics and time-dependent characteristics of data by training a variational autoencoder and a long short-term memory model.By labeling data with large reconstruction errors,the model can effectively detect abnormal data points.Experimental re-sults show that the F1 score of the proposed method on the water quality monitoring dataset of the Internet of Things is 88.5%,which shows better anomaly detection performance than the KNN,VAE and LSTM models.

multivariate time seriesanomaly detectionvariational autoencoderlong short-term memory networksunsuper-vised learning

曹可欣、李永飞、韩博龙

展开 >

华北科技学院计算机学院,廊坊 065201

多变量时序数据 异常检测 变分自编码器 长短期记忆网络 无监督学习

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(22)