首页|基于无监督域自适应的行人重识别改进算法

基于无监督域自适应的行人重识别改进算法

扫码查看
近年来,行人重识别的应用越来越广泛,为了更好地解决跨域自适应识别中由于分辨率、光照等造成的较大差异性和大量数据集难以标注的问题,提出了一种基于伪标签生成的无监督自适应行人重识别网络(PU-Net),采用DBSCAN聚类算法生成伪标签,利用改进的残差网络提取特征,并添加了通道注意力机制提升特征提取能力.实验结果表明,在DukeMTMC-ReID、Market-1501和MSMT17数据集上,mAP分别提升了2.8、0.7、0.3个百分点;Rank-1分别提升了2.7、0.3、0.9个百分点.与大部分模型相比,该方法取得了显著的提升,并且接近于全监督训练的结果.
An improved pedestrian re-identification algorithm based on unsupervised domain adaptation
In recent years,the application of pedestrian re-identification has become more and more widespread.In order to better solve the problem of large differences in cross-domain adaptive recognition due to resolution,illumination,etc.and the diffi-culty of labeling a large number of data sets,a method based on The unsupervised adaptive pedestrian re-identification network(PU-Net)for pseudo-label generation uses the DBSCAN clustering algorithm to generate pseudo-labels,uses an improved residual network to extract features,and adds a channel attention mechanism to improve feature extraction capabilities.Experimental re-sults show that on the DukeMTMC-ReID,Market-1501 and MSMT17 data sets,mAP increased by 2.8,0.7,and 0.3 percentage point respectively;Rank-1 increased by 2.7,0.3,and 0.9 percentage point respectively.Compared with most models,this method achieves significant improvements and is close to the results of fully supervised training.

person re-identificationunsupervised adaptationpseudo-labelhannel attention

陈金良、周卫、曾沛杰、杨益民

展开 >

广西民族大学人工智能学院,南宁 530006

行人重识别 无监督自适应 伪标签 通道注意力机制

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(22)