首页|基于灰狼感知优化算法的危险因素分析

基于灰狼感知优化算法的危险因素分析

扫码查看
危险因素分析是计算机领域重点研究的问题之一,针对危险因素的复杂性以及搜索算法容易陷入局部最优的问题,提出一种灰狼感知优化算法(GWSOA),该算法使用带感知和变异的灰狼优化算法对初始危险因素集合进行筛选,以确定最终危险因素集合.最后在12个数据集上进行了实验,GWSOA在其中11个数据集上取得了最佳的平均适应度值,优于所有基线方法.
Analysis of risk factors based on gray wolf sensing optimization algorithm
Risk factor analysis is a key research topic in the field of computer science.Due to the complexity of risk factors and the tendency of search algorithms to become trapped in local optima,this paper proposes a grey wolf sensing optimization algo-rithm(GWSOA).This algorithm employs a grey wolf optimization algorithm with sensing and mutation capabilities to filter the ini-tial set of risk factors,aiming to determine the final set of risk factors.Experiments conducted on 12 datasets demonstrate that GWSOA achieves the best average fitness values on 11 of these datasets,outperforming all baseline methods.

risk factor analysissearch algorithmgrey wolf sensing optimization algorithm

郑恒杰

展开 >

四川大学锦江学院,眉山 620800

危险因素分析 搜索算法 灰狼感知优化算法

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(22)