首页|基于用户-物品二部图条件游走的差异化成员偏好群组推荐方法

基于用户-物品二部图条件游走的差异化成员偏好群组推荐方法

扫码查看
较之个体推荐,群组推荐面临着成员偏好以及群组偏好表达不准确的问题.在数据有限的情况下,为了精确地表达成员及群组偏好,提出了一种基于二部图条件游走的差异化成员偏好群组推荐方法.首先,在用户-物品二部图上展开条件游走形成条件路径,聚合节点信息形成成员偏好.并针对不同的物品,采用差异化注意力机制为群组内成员赋予不同的权重,聚合整体偏好,计算群组对待推荐物品的打分并完成推荐.该实验在真实数据集上进行,验证了所提出方法的有效性.
A group recommendation method for differentiated member preferences based on user-item bipartite graph conditional walk
Compared with individual recommendation,group recommendation faces the problem of inaccurate expression of member preferences and group preferences.In the case of limited data,in order to accurately express member and group prefer-ences,a differentiated member preference group recommendation method based on bipartite graph conditional walk is proposed.First,conditional walks are carried out on the user-item bipartite graph to form conditional paths,and node information is aggre-gated to form member preferences.And for different items,a differentiated attention mechanism is used to assign different weights to members in the group,aggregate overall preferences,calculate the group's scores for recommended items and complete the rec-ommendation.This experiment is tested on a real dataset to verify the effectiveness of the proposed method.

group recommendationuser-item bipartite graphconditional walkpreference differencedynamic aggregation

王晟桐、曾国荪

展开 >

同济大学计算机科学及技术系,上海 201804

群组推荐 用户-物品二部图 条件游走 偏好差异 动态聚合

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(22)