首页|基于关联规则的网络安全态势感知

基于关联规则的网络安全态势感知

扫码查看
当前,网络安全问题愈发突出,网络攻击手段不断演变,传统的安全防护手段无法满足对网络安全态势的感知和实时响应的需求.使用Apriori算法和K-Means算法对网络攻击数据进行聚类关系与关联规则挖掘,能实现对网络安全数据的安全态势感知.在实验中把数据分为关键数据与次关键数据,并分别进行关联规则与聚类关系挖掘分析.实验表明利用以上算法能够清晰地感知各项网络安全数据与标记的关联性,为网络安全决策提供重要参考.
Network security situation awareness based on association rules
The problem of network security is becoming more and more prominent.The means of network attack are constantly evolving,and the traditional means of security protection can no longer meet the needs of awareness of network security situation and real-time response.In this paper,Apriori algorithm and K-Means algorithm are used to mine the clustering relation and asso-ciation rules of network attack data,which can realize the security situation awareness of network security data.In the experiment,the data is divided into key data and sub-key data,and the association rules and clustering relation mining are carried out respec-tively.Experiments show that the above algorithm can clearly perceive the correlation between various network security data and markers,and provide an important reference for network security decision-making.

Apriori algorithmK-Means algorithmnetwork security situational awareness

冉启海、蒲兴彪

展开 >

深圳市宇思半导体有限公司,深圳 518000

铜仁学院大数据学院,铜仁 554300

Apriori算法 K-Means算法 网络安全态势感知

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(22)