首页|基于BiLSTM和LDA模型的旅游在线评论文本挖掘

基于BiLSTM和LDA模型的旅游在线评论文本挖掘

扫码查看
越来越多的游客习惯于将各大旅游网站的在线评论信息作为出游决策的重要参考,因此,如何通过挖掘在线评论指导景区科学决策,已经成为景区管理者亟需解决的问题.首先从各大旅游网爬取游客的在线评论数据,然后基于BiLSTM模型对评论文本情感倾向进行分析,分别针对正向和负向评论文本利用LDA模型主题聚类、提取特征主题词,从而挖掘游客最关心的几个维度的优势和不足,以数据驱动为景区管理科学决策和精准改进提供数据支撑,进而提升景区的服务质量和游客满意度.实验结果表明,BiLSTM模型的文本向量在情感分类任务中表现良好,LDA主题模型表达能力较强,能很好地挖掘景点的现有优势和潜在不足.
Tourism online comment text mining based on BiLSTM and LDA models
More and more tourists are accustomed to using online comment information from major tourism websites as an im-portant reference for travel decisions.Therefore,how to guide scientific decision-making in scenic areas by mining online com-ments has become an urgent problem that scenic area managers need to solve.Firstly,we crawl the online comment data of tourists from various tourism websites.Then,based on the BiLSTM model,we analyze the sentiment tendency of comment texts.We use the LDA model to cluster and extract feature keywords for positive and negative comment texts,in order to explore the advantages and disadvantages of the dimensions that tourists are most concerned about.We use data-driven approaches to provide data support for scientific decision-making and precise improvement in scenic area management,thereby improving the service quality and tourist satisfaction of scenic areas.The experimental results show that the text vector of BiLSTM model performs well in sentiment classifi-cation tasks,and the LDA topic model has strong expressive ability,which can effectively explore the existing advantages and po-tential shortcomings of scenic spots.

online commentsBiLSTMemotional classificationLDA theme modeltext vector

许良武、张墉、姚丽丽

展开 >

三江学院计算机科学与工程学院,南京 210012

在线评论 BiLSTM 情感分类 LDA主题模型 文本向量

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(22)