首页|基于改进K-means算法的小学学区划分预测

基于改进K-means算法的小学学区划分预测

扫码查看
学区划分预测可以为教育规划和发展提供科学依据.传统K-means算法在进行学区划分预测时存在预测命中率较低的问题.鉴于此,先使用分层聚类对K-means算法处理流程进行优化;其后将传统K-means算法使用的欧氏距离改进为路径规划距离,大幅提高了整体算法的预测命中率.经实验测试,所设计的分层K-means算法在学区划分预测时较原始K-means算法预测命中率平均提升了3.8%、融入路径规划距离的分层K-means算法较原始K-means算法预测命中率平均提升了11.6%.
Primary school district partition prediction based on improved K-means algorithm
The prediction of school district division can provide a scientific basis for educational planning and development.The traditional K-means algorithm has the problem of low prediction hit rate when making school district division predictions.In view of this,hierarchical clustering was used to optimize the processing process of K-means algorithm.Later,the Euclidean dis-tance used by the traditional K-means algorithm is improved to the path planning distance,which greatly improves the prediction hit rate of the overall algorithm.Experimental results show that the designed hierarchical K-means algorithm improves the predic-tion hit rate by 4.7%on average compared with the original K-means algorithm when predicting school districts,and the hierarchi-cal K-means algorithm integrated with path planning distance improves the prediction hit rate by 15.63%on average compared with the original K-means algorithm.

K-means algorithmhierarchical clusteringpath planning distanceschool district division

罗维平、黄加辉

展开 >

武汉纺织大学机械工程与自动化学院,武汉 430200

湖北省数字化纺织装备重点实验室,武汉 430200

K-means算法 分层聚类 路径规划距离 学区划分

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(22)