首页|多源异构网络安全数据可视化融合分析方法

多源异构网络安全数据可视化融合分析方法

扫码查看
当前网络安全领域面临的数据来源多样、结构异构,常规的网络安全数据可视化融合分析方法存在易受时间大范围动态变化影响,导致融合数据交叉熵差异过高,为此提出一种多源异构网络数据可视化融合分析方法.利用Apriori算法对多源异构网络数据进行可视化关联挖掘,构建多源异构网络数据可视化融合评估指标体系,进而完成多源异构网络安全数据的可视化融合分析.实验结果表明,所设计的数据可视化融合分析方法获取到的融合数据交叉熵与实际数据交叉熵一致,说明设计方法能够有效提升网络安全数据的分析效率和准确性,为网络安全的监测与预警提供有力支持.
Analysis method for visual fusion of multi-source heterogeneous network security data
At present,the network security field is faced with various data sources and heterogeneous structures.Conventional network security data visualization fusion analysis methods are susceptible to large-scale dynamic changes in time,which leads to high cross-entropy difference of the fusion data.Therefore,a new method of multi-source heterogeneous network data visualization fusion analysis is proposed.The Apriori algorithm is used for visual association mining of multi-source heterogeneous network data,and the evaluation index system of multi-source heterogeneous network data is constructed to complete the visual fusion analysis of multi-source heterogeneous network security data.The experimental results show that the cross entropy of fusion data obtained by the designed data visualization fusion analysis method is consistent with the actual data cross entropy,indicating that the design method can effectively improve the analysis efficiency and accuracy of network security data,and provide strong support for network security monitoring and early warning.

multi-source heterogeneousnetworksecurity datavisualizationfusion analysis

郭鹏、袁飞

展开 >

海南经贸职业技术学院信息技术学院,海口 571127

海南经贸职业技术学院网络信息中心,海口 571127

多源异构 网络 安全数据 可视化 融合分析

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(22)