首页|基于大数据分析的移动终端数据流量预测方法

基于大数据分析的移动终端数据流量预测方法

扫码查看
移动数据流量受多种因素影响,如用户行为、网络状况、节假日效应等,呈现出高度的非平稳性,使得直接进行预测变得困难.为此,提出了基于大数据分析的移动终端数据流量预测方法.首先,利用皮尔逊相关系数精确衡量相邻时间序列之间的相关性,并绘制出直观的时序图,有效揭示了数据流量的动态变化规律和潜在趋势;然后,针对非平稳时间序列,引入移动平均概念提取关键时序特征,同时采用差分法对非平稳序列进行有效处理,确保数据平稳性;最后,在特征提取和流量预测阶段,运用了大数据技术,深入挖掘数据流量背后的复杂模式,实现了高精度预测.实验结果表明,该方法误差值仅为15 MB,预测结果较为精准.
Mobile terminal data traffic prediction method based on arge big data analysis
Mobile data traffic is influenced by various factors,such as user behavior,network conditions,holiday effects,etc.,presenting a high degree of non-stationarity,making direct prediction difficult.Therefore,a mobile terminal data traffic prediction method based on big data analysis has been proposed.Firstly,the Pearson correlation coefficient is used to accurately measure the correlation between adjacent time series,and an intuitive time series graph is drawn to effectively reveal the dynamic changes and potential trends of data flow.Secondly,for non-stationary time series,the concept of moving average is introduced to extract key temporal features,and differential method is used to effectively process non-stationary sequences to ensure data stationarity.Fi-nally,in the stage of feature extraction and traffic prediction,big data technology was applied to deeply explore the complex pat-terns behind data traffic,achieving high-precision prediction.The experimental results show that the error value of this method is only 15 MB,and the prediction results are relatively accurate.

big data analysisdata traffic predictionprediction methodtime seriestime series graph

马振尧、郭少芳

展开 >

国立韩巴大学工程学院,韩国

安徽理工大学人文社会科学学院,淮南 232001

大数据分析 数据流量预测 预测方法 时间序列 时序图

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(22)