首页|基于双向长短期记忆网络与时间序列卷积的户变关系异常识别

基于双向长短期记忆网络与时间序列卷积的户变关系异常识别

扫码查看
在电力系统的运维中,准确识别户变关系异常是确保电网运行稳定性与效率的关键.为了进行户变关系异常的准确识别,提出了一种新型的基于双向长短期记忆网络BiLSTM与时间序列卷积TCN的并行神经网络模型,旨在提高户变关系异常识别的准确性和效率.通过将BiLSTM和TCN的优势结合,该模型能够更有效地处理时间序列数据,捕捉异常模式.实验结果表明,与传统的LSTM和BiLSTM模型相比,所提出的BiLSTM-TCN并行神经网络模型在识别精度和泛化能力方面表现更优.此研究为电力系统异常监测提供了一种有效的技术方案.
Abnormal identification of household change relationships based on bidirectional long short-term memory network and temporal convolutional network
In the operation and maintenance of power systems,accurately identifying abnormal household change relationships is crucial to ensuring the stability and efficiency of the power grid.In order to achieve precise recognition of abnormal household change relationships,this paper proposes a novel parallel neural network model based on Bidirectional Long Short-Term Memory(BiLSTM)and Temporal Convolutional Networks(TCN).The goal is to improve the accuracy and efficiency of abnormal identifica-tion.By combining the advantages of BiLSTM and TCN,the proposed model can more effectively handle time series data and cap-ture anomaly patterns.Experimental results show that,compared to traditional LSTM and BiLSTM models,the proposed BiLSTM-TCN parallel neural network model outperforms in terms of recognition accuracy and generalization ability.This research provides an effective technical solution for abnormal monitoring in power systems.

Bidirectional long short-term memory networktemporal convolutional networkhousehold change relationshipsabnormal detection

张肖羽

展开 >

国网河北省电力有限公司邯郸市永年区供电分公司,邯郸 056002

双向长短期记忆网络 时间序列卷积 户变关系 异常检测

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(22)