首页|基于YOLOv5的车辆行人检测与计数系统的设计

基于YOLOv5的车辆行人检测与计数系统的设计

扫码查看
为了更好地为城市交通规划、人流控制和安全管理提供重要数据支持,基于深度学习设计一个车辆行人检测与计数系统.首先收集车辆行人数据集并进行标注处理,并选择YOLOv5模型对数据集进行模型训练和评估.然后将训练好的模型部署在Jetson Nano 4 GB核心板上,可实现对单张图片、视频及摄像头实时流进行车辆和行人检测,并将检测和统计结果通过显示屏显示.最后基于PyQt5设计一个用户界面,便于用户操作及测试结果可视化.测试结果表明,搭建的系统不仅实现了对行人流量和车流量的实时监测和精确计数,而且能够支持多种检测方式.
Design of vehicle and pedestrian detection and counting system based on YOLOv5
In order to better provide important data support for urban transportation planning,pedestrian flow control and safety management,this thesis designs a vehicle pedestrian detection and counting system based on deep learning.The vehicle pe-destrian dataset is first collected and labeled,and the YOLOv5 model is selected for model training and evaluation of the dataset.Then the trained model is deployed on Jetson Nano 4G core board,which can realize vehicle and pedestrian detection for single pic-ture,video and camera real-time stream,and the detection and counting results are shown through the display.Finally,a user inter-face based on PyQt5 is designed to facilitate user operation and visualization of test results.The test results show that the built sys-tem not only realizes real-time monitoring and accurate counting of pedestrian flow and vehicle flow,but also can support multiple detection methods.

deep learningvehicle-pedestrian detectionYOLOv5 modelmodel traininguser interface

李心烨、柏文静、郭常盈

展开 >

南阳理工学院信息工程学院,南阳 473004

深度学习 车辆行人检测 YOLOv5模型 模型训练 用户界面

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(22)