首页|基于机器学习的入侵检测系统

基于机器学习的入侵检测系统

扫码查看
网络安全已成为全球关注的一个重要问题.入侵检测系统(IDS)通过检测恶意行为者和活动,在保护互联网络方面发挥着至关重要的作用.然而,随着数据数量的增长,在训练ML模型时,降维变得越来越困难.针对这一点,文章介绍了一种新的基于ML的网络入侵检测模型,该模型使用随机过采样(RO)来解决数据不平衡问题,并基于聚类结果进行叠加特征嵌入,以及用于降维的主成分分析(PCA),为大型和不平衡数据集设计.该模型在UNSW-NB15数据集上表现出色,RF和ET模型准确率分别达到99.53%和99.14%,优于现有技术,可用于准确监测和识别网络流量入侵,确保网络安全.
Intrusion detection system based on machine learning
Cybersecurity has become a globally significant issue.Intrusion Detection Systems(IDS)play a crucial role in safeguarding interconnected networks by detecting malicious actors and activities.However,as the volume of data grows,dimen-sionality reduction becomes increasingly challenging during ML model training.Addressing this,the article introduces a novel ML-based network intrusion detection model.This model utilizes Random Oversampling(RO)to tackle data imbalance,incorpo-rates feature embedding based on clustering results,and employs Principal Component Analysis(PCA)for dimensionality reduc-tion,tailored for large and imbalanced datasets.The model performs remarkably well on the UNSW-NB15 dataset,with RF and ET models achieving accuracies of 99.53%and 99.14%respectively,surpassing existing technologies.It can accurately monitor and identify network traffic intrusions,ensuring network security.

intrusion detection systemfeature extractionrandom oversamplingprincipal component analysismachine learning

张兵权、马立鑫、杨一凡

展开 >

北华航天工业学院计算机学院,廊坊 065000

入侵检测系统 特征提取 随机过采样 主成分分析 机器学习

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(22)