首页|基于残差结构的编解码视频超分辨率重建技术研究

基于残差结构的编解码视频超分辨率重建技术研究

扫码查看
研究提出了基于残差结构的编解码网络REDVSR,用于解决视频超分辨率(VSR)中大运动重建和长序列信息利用不足的问题.该网络在BasicVSR基础上改进,分为编码和解码两个阶段.编码阶段利用循环神经网络、非局部残差神经网络块和光流网络提取对齐低分辨率帧特征.解码阶段融合双向特征,通过时空注意力网络提取时空信息,最终上采样生成高分辨率帧.实验表明,该方法在公共数据集上取得较高重建精度,在PSNR和SSIM等指标上优于现有方法.
Research on video super-resolution reconstruction based on residual structure encoding and decoding
In this paper,a residual-based codec network REDVSR is proposed to solve the problem of large motion reconstruc-tion and insufficient utilization of long sequence information in video super resolution(VSR).The network is improved on the basis of BasicVSR and is divided into two stages:encoding and decoding.In the coding phase,recurrent neural network,non-local residual neural network block and optical flow network are used to extract aligned low-resolution frame features.In the decoding phase,bidirectional features are integrated,spatio-temporal information is extracted through spatio-temporal attention network,and high-resolution frames are generated by upsampling.Experimental results show that the proposed method achieves higher recon-struction accuracy on public data sets,and outperforms the existing methods in PSNR and SSIM.

video super resolution reconstructionneural networknon-local residual networkspace-time attention mechanism

刘诚、刘倩男、闫佳

展开 >

西安石油大学计算机学院,西安 710000

视频超分辨率重建 神经网络 非局部残差网络 时空注意力机制

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(23)