首页|基于服装检测模型的舒适度实时热阻值获取

基于服装检测模型的舒适度实时热阻值获取

扫码查看
为了获取实时且准确的室内人员服装热阻值,旨在开发基于YOLOv8室内人员服装检测模型(PCT_YOLO)解决室内人员服装类别间不明显和服装目标遮挡时准确性差和实时性不足的问题.首先,采用注意力快速空间金字塔池化(ASPPF)突出未被遮挡关键特征,从而减轻遮挡带来的影响;其次,提出了特征增强融合模块(GS_C2f)获得更丰富的特征表示,使类别边界信息更明显,有效区分目标和背景;最后,使用轻量级Conv网络(LCN)使模型具有更高的实时性.实验结果表明,在自制的数据集上,PCT_YOLO的mAP50、Parameter(106)达到了93.1%、2.505×106,相较于原始YOLOv8n模型,mAP50提高了3.0个百分点,参数量减少了5.05×105,该方法在精度和速度上均有显著提升,满足实际场景通过人员服装检测获取服装热阻的需求.
Real-time thermal resistance value acquisition based on clothing detection model for comfort
To achieve real-time and accurate measurement of clothing thermal resistance,a YOLOv8-based personnel cloth-ing detection model(PCT_YOLO)is developed.The model addresses the issues of poor accuracy and lack of real-time performance when differences between personnel clothing categories are subtle and targets are occluded.Firstly,the Attentional Fast Spatial Pyramid Pooling(ASPPF)module is used to highlight unoccluded key features,thereby reducing the impact of occlusion.Secondly,a feature enhancement fusion module(GS_C2f)is proposed to obtain richer feature representations,making category boundary in-formation more distinct and effectively distinguishing the target from the background.Finally,a lightweight convolutional network(LCN)is employed to enhance the model's real-time capabilities.Experimental results show that on the self-made dataset,PCT_YOLO's achieved an of 93.1%mAP50 and a Parameter(106)count of 2.505×106.Compared to the original YOLOv8n model,the mAP50 increased by 3.0 percentage point and the number of parameters was reduced by 5.05×105.This method fulfills the re-quirement of obtaining clothing thermal resistance through clothing detection in real-world scenarios.

YOLOv8real-timeclothing detectionclothing thermal resistanceSimAM

黄丁月

展开 >

上海电力大学自动化工程学院,上海 200090

YOLOv8 实时性 服装检测 服装热阻值 SimAM

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(23)