首页|基于改进YOLOv8的激光雕刻表面缺陷监测方法

基于改进YOLOv8的激光雕刻表面缺陷监测方法

扫码查看
激光雕刻过程中,由于光照条件、现场环境等因素的影响,被检测表面的表观特征会产生变化,导致图像质量下降,进而影响缺陷检测的精度.同时,不同的材料和雕刻参数会导致表面特征的多样性和变化性,这对于缺陷检测方法的适应性和泛化能力也提出了更高的要求.为了实现对表面缺陷的精准识别,提出基于改进YOLOv8的激光雕刻表面缺陷监测方法.首先,准备高清相机、激光雕刻机和图像采集设备,在确保设备连接正常的基础上设置拍摄参数,采集激光雕刻表面图像;其次,对采样图像进行去噪、亮度对比度调整、色阶分布优化以及锐化处理,提高激光雕刻图像的细节清晰度,并利用AOD-PONO-Net网络完成图像去雾与增强处理;最后,在常规YOLOv8算法的基础上,加入PANet结构进一步融合不同尺度的特征图,获得图像中更为丰富的特征信息,再通过融合浅层特征图中的信息,实现对表面缺陷的监测.实验结果表明:该方法不仅可以实现对激光雕刻表面缺陷图像的精准识别,还能检测到表面缺陷的数量.
Laser engraving surface defect monitoring method based on improved YOLOv8
During the laser engraving process,due to factors such as lighting conditions and on-site environment,the apparent features of the tested surface may change,resulting in a decrease in image quality and ultimately affecting the accuracy of defect de-tection.Meanwhile,different materials and carving parameters can lead to the diversity and variability of surface features,which also puts higher demands on the adaptability and generalization ability of defect detection methods.In order to achieve precise iden-tification of surface defects,this study proposes a laser engraving surface defect monitoring method based on improved YOLOv8.Firstly,prepare high-definition cameras,laser engraving machines,and image acquisition equipment,set shooting parameters on the basis of ensuring that the equipment is connected properly,and collect surface images of laser engraving.Secondly,the sampled images are subjected to denoising,brightness contrast adjustment,color scale distribution optimization,and sharpening processing to improve the detail clarity of laser engraved images.AOD PONO Net network is used to complete image dehazing and enhance-ment processing.Finally,based on the conventional YOLOv8 algorithm,PANet structure is added to further fuse feature maps of different scales,obtaining richer feature information in the image.Then,by fusing information from shallow feature maps,surface defect monitoring is achieved.The experimental results show that this method can not only achieve accurate recognition of surface defect images in laser engraving,but also detect the number of surface defects.

YOLOv8feature extractionimage enhancementsurface defectslaser engraving

潘蓉、刘金库、严莹、沈秋惠、熊焰

展开 >

华东理工大学工程创新实践中心,上海 201424

YOLOv8 特征提取 图像增强 表面缺陷 激光雕刻

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(23)