首页|基于改进的YOLOv8口腔全景影像智能诊断的研究

基于改进的YOLOv8口腔全景影像智能诊断的研究

扫码查看
传统的YOLOv8模型在口腔影像识别方面存在一定的局限性,如图像分辨率低、牙齿病变区域定位不准.针对以上问题,改进了原YOLOv8模型,即在原模型的backbone结构中加入自适应空间相关性金字塔注意力机制(ASCPA),并且用全维动态卷积(ODConv)替换部分普通卷积模块(Conv).其次,再将原模型的激活函数进行优化.实验结果表明,改进的YOLOv8模型牙齿病症识别的平均精确度(mAP)和召回率(Recall)都提升了3.3个百分点,为口腔医学影像处理的进一步研究提供了有力支持.
Research on intelligent diagnosis of oral panoramic image based on improved YOLOv8
The traditional YOLOv8 model has some limitations in oral image recognition,such as low image resolution and in-accurate localization of dental lesion regions.To address the above problems,the original YOLOv8 model is improved by improving the original YOLOv8 model,i.e.,adding the adaptive spatial correlation pyramid attention mechanism(ASCPA)to the backbone structure of the original model and replacing part of the ordinary convolution module(Conv)with the full-dimensional dynamic con-volution(ODconv).Secondly,the activation function of the original model is then optimized.The experimental results show that the improved YOLOv8 model has improved the mean accuracy(mAP)and recall of dental disease recognition by 3.3 percentage point,respectively,which provides a strong support for further research in dental medical image processing.

panoramic dental imagedeep learningYOLOv8ASCPAODConv convolution

崔文君、杨海燕、贾岩龙

展开 >

天津职业技术师范大学电子工程学院,天津 300222

口腔全景影像 深度学习 YOLOv8 ASCPA ODConv卷积

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(23)