首页|基于改进YOLOv7遥感图像的小目标检测

基于改进YOLOv7遥感图像的小目标检测

扫码查看
目前目标检测技术已趋于成熟,但小目标检测仍是研究的难点,特别是目标小、背景复杂的遥感图像.针对这一问题,提出一种改进的YOLOv7目标检测模型.结合多尺度特征融合的思想,在YOLOv7的特征提取阶段添加一个加权特征金字塔网络BiFPN,BiFPN融合不同尺度的特征图,得到更加丰富的特征表示,从而提升目标检测的准确性.另外,利用BiFormer注意力模块提高网络对小尺度目标的敏感度,降低噪声所带来的影响,优化检测的目标,提高检测的效率.最后,使用MPDIoU损失函数解决CIoU损失函数的局限性,以提高模型的泛化性.实验结果表明,改进后的模型在VisDrone数据集上,mAP值与原YOLOv7模型相比提高了4.1个百分点,并且检测准确度也有所提高.
Small target detection based on improved YOLOv7 remote sensing image
At present,the target detection technology has become mature,but small target detection is still a difficult point in research,especially for remote sensing images with small targets and complex backgrounds.In order to solve this problem,an im-proved YOLOv7 target detection model was proposed.Combined with the idea of multi-scale feature fusion,a weighted feature pyra-mid network BiFPN is added in the feature extraction stage of YOLOv7,and BiFPN fuses feature maps of different scales to obtain richer feature representations,thereby improving the accuracy of object detection.In addition,the BiFormer attention module is used to improve the sensitivity of the network to small-scale targets,reduce the influence of noise,optimize the detected targets,and improve the detection efficiency.Finally,the MPDIoU loss function is used to solve the limitations of the CIoU loss function to im-prove the generalization of the model.Experimental results show that the mAP value of the improved model is 4.1 percentage point higher than that of the original YOLOv7 model on the VisDrone dataset,and the detection accuracy is also improved.

remote sensing imagessmall target detectionYOLOv7BiFPNBiFormer

南博尧

展开 >

太原师范学院计算机与科学技术学院,晋中 030619

遥感图像 小目标检测 YOLOv7 BiFPN BiFormer

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(23)