首页|一种同质关系增强的图神经网络协同推荐算法

一种同质关系增强的图神经网络协同推荐算法

扫码查看
图神经网络(GNNs)因其出色的高阶连通性捕捉能力,已成为协同过滤领域的主导技术.尽管GNN在用户-项目交互建模方面表现出色,但现研究往往忽略了用户和项目间的同质性关系,这些关系对提升推荐系统性能极为关键.虽然GNN能通过偶数阶邻居节点间接获取同质性信息,但方法存在不足,可能导致推荐效果不理想,且难以准确捕捉同质性.针对这些问题,提出了同质关系增强的图卷积网络(HREGCN),通过奇异值分解(SVD)构建同质图,以更精确地识别用户和项目间的同质性.在两个公开数据集上的实验结果表明,HREGCN在图协同过滤任务中实现了显著的性能提升.
Research on collaborative filtering of graph neural networks with homogeneous relationship enhancement
Graph Neural Networks(GNNs),owing to their exceptional capability to capture high-order connectivity,have emerged as a leading technology in the domain of collaborative filtering.Despite their remarkable performance in modeling user-item interactions,current studies often neglect the homophily relationships between users and items,which are pivotal for en-hancing the performance of recommendation systems.Although GNNs can indirectly acquire homophily information through even-order neighbor nodes,the approach has its limitations,potentially leading to suboptimal recommendation outcomes and diffi-culties in accurately capturing homophily.To address these issues,we introduce the Homophily Relationship Enhanced Graph Con-volutional Network(HREGCN),which constructs a homophily graph via Singular Value Decomposition(SVD)to more precisely identify the homophily between users and items.Experimental results on two public datasets indicate that HREGCN has achieved significant performance improvements in graph-based collaborative filtering tasks.

recommendation algorithmcollaborative filteringgraph neural networkhomogeneous relationship

潘丹

展开 >

广州城建职业学院信息工程学院,广州 510925

推荐算法 协同过滤 图神经网络 同质关系

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(23)