首页|基于改进孪生网络的目标跟踪算法

基于改进孪生网络的目标跟踪算法

扫码查看
计算机视觉技术是一门涉及计算机科学和图像处理的交叉学科,是深度学习和人工智能研究的重要部分,同时在工程应用中也具有巨大的潜力.视觉目标跟踪作为计算机视觉领域中的一个重要研究方向,广泛应用于无人驾驶、机器人和视频监控等领域.在无人平台中有限的计算资源环境下,为降低算法的参数量和计算量,提出了一种改进的Siam-ours目标跟踪算法,该算法采用了MobileNetV3作为特征提取的主干网络,同时为了解决训练过程中原有Contrastive Loss损失函数导致的样本不均衡问题,进而导致算法性能变差的问题,引入了Focal Loss损失函数.改进后的算法在测试集UAV123的精度和成功率分别提高了1.7和2.3个百分点.
Object tracking algorithm based on improved siamese network
Computer vision technology is an interdisciplinary field involving computer science and image processing,and it is an important part of deep learning and artificial intelligence research.It also has great potential for engineering applications.Visual object tracking is an important research direction in the field of computer vision,widely used in areas such as autonomous driving,robots,and video surveillance.This paper proposes an improved Siam-ours object tracking algorithm for limited computing resources in unmanned platforms,aiming to reduce the number of algorithm parameters and computational complexity.The algo-rithm uses MobileNetV3 as the main network for feature extraction,and introduces the Focal Loss function to address the problem of imbalanced sample distribution in the training process caused by the original Contrastive Loss function,which leads to deteriora-tion of algorithm performance.The improved algorithm improves the accuracy and success rate by 1.7 and 2.3 percentage points,respectively,on the UAV123 test set.

computer visionunmanned platformMobileNetV3Focal Loss

段卓、周卫、杨益民、彭晓聪

展开 >

广西民族大学电子信息学院,南宁 530006

广西民族大学人工智能学院,南宁 530006

计算机视觉 无人平台 MobileNetV3 Focal Loss

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(23)