首页|一种融合多模态数据的情绪识别方法

一种融合多模态数据的情绪识别方法

扫码查看
在人机交互领域,赋予机器以识别和理解人类情绪状态的能力已成为一个关键的课题.生理信号作为人体生理活动的直接反映,为客观评估情绪状态提供了一种有效途径.而多模态生理信号的情绪识别技术正受到研究者的广泛关注.提出了一种基于卷积神经网络(CNN)框架的深度学习架构,从多种生理电信号中有效提取与情绪相关的时空特征.该模型能够综合利用多模态数据中的情绪信息,以实现更为精准和细致的情绪状态识别.在多模态情绪数据库DEAP上进行了测试实验.实验结果显示,模型在两种情绪识别任务中均超越了基线模型,这一结果不仅验证了所提模型的有效性,也展示了其相对于传统模型的显著优势.
An emotion recognition method based on multimodal data fusion
In the field of human-computer interaction,endowing machines with the ability to recognize and understand human emotional states has become a key issue.Physiological signals,as a direct reflection of human physiological activities,provide an effective way to objectively evaluate emotional states.The emotion recognition technology based on multimodal physiological sig-nals is receiving widespread attention from researchers.This study proposes a deep learning architecture based on the Convolu-tional Neural Network(CNN)framework,which effectively extracts spatiotemporal features related to emotions from various yiphysiological electrical signals.This model can comprehensively utilize emotional information from multimodal data to achieve more accurate and detailed emotional state recognition.We conducted testing experiments on the multimodal emotion database DEAP.The experimental results showed that the model surpassed the baseline model in both emotion recognition tasks,which not only validated the effectiveness of our proposed model but also demonstrated its significant advantages over traditional models.

deep learningemotional recognitionmultimodalphysiological signals

甘宏

展开 >

广州南方学院商学院,广州 510970

深度学习 情绪识别 多模态 生理信号

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(23)