首页|基于SMOTE与GBDT算法在银行客户流失预测中的应用

基于SMOTE与GBDT算法在银行客户流失预测中的应用

扫码查看
为了提前发现银行潜在的流失客户,构建基于SMOTE与GBDT算法客户流失率预测模型.该模型首先进行数据预处理,然后通过分析数据集中各个特征之间的关系,构建对流失率可能产生影响的新特征.接着采用SMOTE算法处理数据分布不平衡问题.最后将数据集输入集成学习GBDT分类器来进行预测.实验结果表明,在处理不平衡数据集分类问题时,与没有进行SMOTE处理的算法相比,基于SMOTE与GBDT算法在AUC、G-mean和F1值指标上都获得了提升.
Application of SMOTE and GBDT algorithm in bank customer churn prediction
In order to discover potential churn customers of banks in advance,a customer churn rate prediction model based on SMOTE and GBDT algorithm is constructed.The model first performs data preprocessing,and then constructs new features that may affect the churn rate by analyzing the relationship between various features in the data set.Next,the SMOTE algorithm is used to deal with the imbalance of data distribution.Finally,the data set is input into the integrated learning GBDT classifier for prediction.The SMOTE and GBDT algorithms proposed in this article have achieved improvements in AUC,G-mean,and F1 score indicators.

churn predictionSMOTE algorithmGBDT algorithmensemble learning

许超、许莉、游凤芹

展开 >

南京理工大学紫金学院计算机与人工智能学院,南京 210000

南京理工大学数学与统计学院,南京 210000

流失预测 SMOTE算法 GBDT算法 集成学习

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(23)