首页|增强全局特征的中文命名实体识别

增强全局特征的中文命名实体识别

扫码查看
在英文中,每个单词在文档中的全局特征可以有效提升实体识别度.与英文不同,中文没有明确的分隔符,模型学习的基本单元是字符而非词汇.因此,引入字符的全局特征增加了模型学习的难度.为了解决这一问题,在模型提取每个字符的上下文表示后,首先获取每个字符在文档中的不同上下文表示,然后对不同的上下文表示进行多重过滤,最后通过门控注意力机制控制全局特征的预测权重.实验结果表明,提出的模型在Resume、Weibo和Ontonotes 4.0数据集上相比基准模型更具竞争力.
Enhancing global features for Chinese named entity recognition
In English,global features of each word in a document can effectively enhance entity recognition.Unlike English,Chinese does not have explicit delimiters,and the basic unit of learning for models is characters rather than words.Therefore,intro-ducing global features for characters increases the difficulty of model learning.To address this issue,after the model extracts con-textual representations for each character,it first obtains different contextual representations for each character within the docu-ment.Then,multiple filters are applied to these different contextual representations.Finally,a gated attention mechanism controls the prediction weight of the global features.Experimental results show that the proposed model outperforms baseline models on the Resume,Weibo,and Ontonotes 4.0 datasets.

Chinese named entity recognitionglobal featuresfiltering mechanismgating attention

常君、刘金花、刘峰

展开 >

山西医科大学汾阳学院,汾阳 032200

中文命名实体识别 全局特征 过滤机制 门控注意力

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(23)