首页|基于Transformer和扩散模型的流量预测方法

基于Transformer和扩散模型的流量预测方法

扫码查看
针对现有的流量预测方法仅考虑单模态信息,且样本不足时容易出现过拟合的问题,提出基于Transformer和扩散模型的预测方法.采用扩散模型生成与真实样本同分布的虚拟样本.通过构建多模态Transformer模型,从时间、频域和相关性三个维度对数据样本进行深度特征提取,最后融合三种特征信息进行网络流量预测.实验结果表明,所提方法能显著提升预测性能.具体而言,所提方法仅利用10%的数据量时,预测效果接近使用全量数据训练的Transformer模型;而当数据量提升至50%时,效果超过全量数据训练的Transformer模型.
Flow prediction method based on Transformer and diffusion model
A prediction method based on Transformer and diffusion model is proposed to address the problem of overfitting in existing traffic prediction methods that only consider single modal information and are prone to overfitting when there are insuffi-cient samples.Generate virtual samples with the same distribution as real samples using a diffusion model.By constructing a multi-modal Transformer model,deep feature extraction is performed on data samples from three dimensions:time,frequency domain,and correlation.Finally,the three types of feature information are fused for network traffic prediction.The experimental results show that the proposed method can significantly improve the prediction performance.Specifically,when the proposed method only utilizes 10%of the data,its prediction performance is close to that of a Transformer model trained on full data.And when the data volume increases to 50%,the effect surpasses that of the Transformer model trained on full data

flow forecastself-attention mechanismmultimodaldiffusion model

郭水平

展开 >

中国电子科技集团公司第七研究所,广州 510310

流量预测 自注意力机制 多模态 扩散模型

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(23)