首页|基于多特征嵌入的中文命名实体识别

基于多特征嵌入的中文命名实体识别

扫码查看
提出了一种基于多特征嵌入的中文命名实体识别方法.首先使用BERT模型提取含丰富上下文信息的字向量,再利用双向长短期记忆网络(BiLSTM)提取字嵌入向量和词根嵌入向量的特征,同时通过迭代膨胀卷积神经网络(IDCNN)对字形嵌入向量进行特征提取,接着将这三个特征向量拼接,输入多头自注意力机制层,动态融合特征,提取关键特征.最后,使用条件随机场(CRF)进行标注解码.为进一步提高性能,引入知识蒸馏,用教师模型指导学生模型训练.在Resume数据集上F1值达到96.51%,相比基线模型有显著提升.
Chinese named entity recognition based on multi-feature embedding
This paper proposes a Chinese named entity recognition method based on multi-feature embedding.Firstly,BERT model is used to extract the word vector containing rich context information,then BiLSTM is used to extract the features of the word embedding vector and the word root embedding vector,meanwhile,the iterative expansive convolutional neural network(IDCNN)is used to extract the features of the glpyh embedding vector,and then the three feature vectors are combined.Input multiple layers of self-attention mechanism,integrate features dynamically,and extract key features.Finally,conditional random field(CRF)is used for annotation and decoding.In order to further improve the performance,knowledge distillation is introduced and teacher model is used to guide student model training.F1 value of 96.51%was obtained on the Resume dataset,a significant improvement over the baseline model.

named entity recognitionmulti-feature embeddingmulti-head self-attention mechanismknowledge distillation

蔡思涵、胡为、刘伟、夏钰林

展开 >

湖南中医药大学信息科学与工程学院,长沙 410013

命名实体识别 多特征嵌入 多头自注意力机制 知识蒸馏

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(23)