首页|一种基于OpenCV及树莓派的疲劳驾驶自动检测系统设计

一种基于OpenCV及树莓派的疲劳驾驶自动检测系统设计

扫码查看
疲劳驾驶时判断力和反应力的下降所引发的交通安全事故对个人生命财产安全和社会都会造成巨大危害,针对传统的疲劳驾驶检测系统存在制作成本高、数据精确度和可靠性低、系统工序复杂、检测反馈滞后和效率低等问题,提出了一种效率较高、成本较低的基于OpenCV及树莓派的疲劳驾驶自动检测系统设计方案.首先,采用OpenCV Dlib库的特征脸识别算法对人脸采集2000张样本进行机器深度学习训练,再用AdaBoost迭代算法建立不同的弱分类器模型来训练得到强分类器;其次,对眼睛、嘴巴及其他面部区域等建立连线坐标作为参考指标,并采集眼睛的眨眼频率、嘴巴闭合程度;以树莓派4B为主控驱动二维舵机云台,采用PID算法自动检测追踪驾驶员.最终,得出该疲劳驾驶自动检测系统的正确识别检测率达90%以上.
Design of fatigue driving automatic detection system based on OpenCV and Raspberry PI
The traffic safety accidents caused by the decline of judgment and reaction ability during fatigue driving will cause great harm to personal life and property safety and society.The traditional fatigue driving detection system has some problems,such as high production cost,low data accuracy and reliability,complex system process,low detection feedback lag and efficiency.This paper proposes a design scheme of fatigue driving automatic detection system based on OpenCV and Raspberry PI with high effi-ciency and low cost.Firstly,the Eigenfaces for Recognition algorithm of OpenCV Dlib library was used to collect 2000 face samples for machine deep learning training,and then the AdaBoost iterative algorithm was used to establish different weak classifier models to train strong classifiers.Secondly,the line coordinates of the eyes,mouth and other facial regions were established as reference in-dicators,and the blink frequency of the eyes and the degree of mouth closure were collected.The Raspberry PI 4B was used as the main control to drive the two-dimensional steering gimbal,and the PID algorithm was used to automatically detect and track the driver.Finally,the correct recognition detection rate of the fatigue driving automatic detection system is more than 90%.

fatigue drivingOpenCVautomatic detectioneigenface recognition algorithmPID algorithm

蒙媛媛、杨晓斐、黄万尧、王智强、漆言、滕广健、韦凯、黄忠平

展开 >

桂林理工大学物理与电子信息工程学院,桂林 541004

疲劳驾驶 OpenCV 自动检测 特征脸识别算法 PID算法

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(23)