首页|智能无人车道路缺陷自动检测模型的设计与研究

智能无人车道路缺陷自动检测模型的设计与研究

扫码查看
随着交通网络的不断扩展,公路里程持续增长,道路养护压力也与日俱增.针对该问题,提出适用于智能无人车的道路缺陷自动检测模型,该模型基于目标检测,采用YOLOv8为基础模型,使用道路缺陷数据对模型进行训练.优先对模型训练参数进行调整,得到在相同训练周期下效果最好的训练参数,对全部数据进行训练,最后模型的mAP值为45.8%,将模型应用在智能无人车,可以准确、快速地识别多种道路缺陷.
Design and research of automatic road defects detection model for intelligent unmanned vehicle
As the transportation network expands,the road mileage continues to grow,and the pressure on road maintenance is also increasing.In response to this problem,this paper proposes an automatic defect detection model for intelligent unmanned ve-hicles that is suitable for roads.The model is based on object detection and uses YOLOv8 as the base model.The model is trained using defect data.In this paper,the training parameters of the model are adjusted first,and the best training parameters that achieve the best results in the same training cycle are obtained.The entire dataset is then trained,and the mAP value of the model is 45.8%.When the model is applied to intelligent autonomous vehicles,it can accurately and quickly identify various road defects.

object detectionroad defectsintelligent unmanned vehiclesYOLOv8 modelroad maintenance

邹成、纪佳琪

展开 >

河北民族师范学院数学与计算机科学学院,承德 067000

河北省文化旅游大数据技术创新中心,承德 067000

目标检测 道路缺陷 智能无人车 YOLOv8模型 道路养护

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(24)