首页|基于优化YOLOv8-X的印刷电路板缺陷智能检测方法

基于优化YOLOv8-X的印刷电路板缺陷智能检测方法

扫码查看
为提高印刷电路板(PCB)缺陷检测的准确性与效率,提出了一种优化YOLOv8-X架构的智能检测方法.通过系统优化网络结构、激活函数和损失函数,显著增强了模型的性能.首先,在骨干层引入CBAM注意力机制,增强特征关联性.随后将颈部网络中传统卷积模块替换为RepNCSPELAN4,提升模型表达能力.其次,将头部网络中的损失函数替换为Generalized IoU,有效解决小目标检测和类别不平衡问题,增强模型的鲁棒性.最后在激活函数方面,使用Leaky ReLU替代ReLU,提升了模型的非线性特征表达能力,适应复杂的缺陷检测场景.实验结果表明,改进后的YOLOv8-X模型在PCB缺陷检测任务中实现了显著的精度提升和更强的鲁棒性,显示了其在工业检测领域的广泛应用潜力.
An intelligent defect detection method for printed circuit boards based on optimized YOLOv8-X
To improve the accuracy and efficiency of printed circuit board(PCB)defect detection,this paper proposes an opti-mized YOLOv8-X-based intelligent detection method.By systematically optimizing the network structure,activation functions,and loss functions,the model's performance is significantly enhanced.First,the CBAM attention mechanism is introduced in the back-bone layer to strengthen feature correlation.Then,the traditional convolution modules in the neck network are replaced with RepNCSPELAN4,improving the model's representational capacity.Furthermore,the loss function in the head network is replaced with Generalized IoU,effectively addressing small object detection and class imbalance issues,thus enhancing the model's ro-bustness.Finally,Leaky ReLU is employed in place of ReLU as the activation function,improving the model's nonlinear feature representation,making it better suited for complex defect detection scenarios.Experimental results demonstrate that the opti-mized YOLOv8-X model achieves significant improvements in accuracy and robustness for PCB defect detection tasks,showcasing its broad application potential in industrial inspection.

PCBYOLOv8-XRepNCSPELAN4defect detection

王崟、陆利坤、齐亚莉、曾庆涛

展开 >

北京印刷学院高端印刷装备信号与信息处理北京市重点实验室,北京 102600

印刷电路板 YOLOv8-X RepNCSPELAN4 缺陷检测

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(24)