首页|基于改进YOLOv8的课堂行为检测算法

基于改进YOLOv8的课堂行为检测算法

扫码查看
学生的课堂行为可以直接反映出学生的学习效果,利用深度学习的方法检测学生课堂行为可以更有效地分析课堂行为以及提高教学效率.提出一种基于YOLOv8模型的识别方法,通过添加BiFormer模块,增强模型对小目标的特征感知,提高其在复杂环境下的行为检测能力,然后将模型的原上采样模块替换为CARAFE,减少上采样过程中的信息丢失,提高模型的检测精度.通过实验,此方法对课堂常见的行为识别的mAP@50达到93.1%,相较于YOLOv8提升了1.5个百分点,能够更加有效地识别课堂行为.
Classroom behavior detection algorithm based on improved YOLOv8
Students'classroom behaviors directly reflect their learning outcomes.Using deep learning methods to detect stu-dent classroom behaviors can more effectively analyze classroom behaviors and improve teaching efficiency.This paper proposes an identification method based on the YOLOv8 model.By adding the BiFormer module,the model's perception of small targets'features is enhanced,improving its behavior detection capabilities in complex environments.The original upsampling module of the model is then replaced with CARAFE to reduce information loss during the upsampling process and improve the model's detec-tion accuracy.Through experiments,our method achieves a mAP@50 of 93%for common classroom behaviors,which is a 1.5 per-centage points improvement over YOLOv8,resulting in more effective identification of classroom behaviors.

computer visionbehavior recognitionobject detectiondeep learning

王赛、周卫

展开 >

广西民族大学人工智能学院,南宁 530006

计算机视觉 行为识别 目标检测 深度学习

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(24)