首页|基于改进YOLOv8的PCB表面缺陷检测算法

基于改进YOLOv8的PCB表面缺陷检测算法

扫码查看
针对印刷电路板(PCB)的表面缺陷识别准确率低的问题,提出基于改进YOLOv8的PCB表面缺陷检测算法.首先,改进算法在YOLOv8主干网络增加EMA注意力机制模块,EMA模块通过编码全局信息重新校准并行分支的通道权重,增强对PCB表面缺陷的检测能力.其次,通过引入Inner-IoU损失函数加快模型收敛速度,提升学习能力.在PCB缺陷数据集上进行实验测试,结果表明改进后算法相较于YOLOv8原模型在召回率与平均检测精度上分别提升了8.1和2.9个百分点.
PCB surface defect detection algorithm based on improved YOLOv8
Aiming at the problem of low accuracy of surface defect recognition of printed circuit boards(PCBs),a PCB surface defect detection algorithm based on improved YOLOv8 is proposed.First,the improved algorithm adds the EMA attention mecha-nism module to the YOLOv8 backbone network,and the EMA module recalibrates the channel weights of parallel branches by en-coding global information to enhance the detection of PCB surface defects.Secondly,the model convergence speed is accelerated by introducing the Inner-IoU loss function to enhance the learning capability.Experimental tests are conducted on the PCB defect dataset,and the results show that the improved algorithm improves the recall rate and average detection precision by 8.1 and 2.9 percentage points,respectively,compared with the original YOLOv8 model.

YOLOv8defect detectionattention mechanismdeep learning

张志英、李莉

展开 >

沈阳化工大学计算机科学与技术学院,沈阳 110142

YOLOv8 缺陷检测 注意力机制 深度学习

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(24)