首页|基于改进YOLOv8的人体皮肤病分类检测算法

基于改进YOLOv8的人体皮肤病分类检测算法

扫码查看
针对当前人体皮肤病检测方面存在漏检、误检率高的问题,以YOLOv8为基准模型进行改进.首先,通过添加DSC(DySnakeConv)提高网络处理不规则数据的能力:其次,利用全局注意力模块GAM,增强对图像有用信息的关注;最后,借助基于动态非单调聚焦机制的Wise-IoU边界框损失函数,来实现对不同质量锚框的平衡.实验表明,改进后的YOLOv8模型在人体常见皮肤病数据集中,平均精确度(mAP)提升了2.6个百分点,精确度(Precision)提升了3.2个百分点,分别达到了88.2%和89.5%.
Classification and detection algorithm of human skin diseases based on improved YOLOv8
In view of the problems of missing detection and high false detection rate in the current human skin disease detec-tion,YOLOv8 is used as the benchmark model to improve.Firstly,the ability of the network to process irregular data is improved by adding DSC(dysnakeconv).Secondly,the global attention module GAM is used to enhance the attention to useful image informa-tion.Finally,with the help of wise IoU boundary box loss function based on dynamic non monotonic focusing mechanism,the bal-ance of different quality anchor boxes is achieved.The experiment shows that the improved YOLOv8 model has improved the aver-age accuracy(mAP)by 2.6%and the accuracy(Precision)by 3.2%,reaching 88.2%and 89.5%respectively in the data set of hu-man common skin diseases.

dermatosistarget detectionattention mechanismDySnakeConvWise-IoU

贾岩龙、杨海燕、崔文君

展开 >

天津职业技术师范大学电子工程学院,天津 300222

皮肤病 目标检测 注意力机制 DySnakeConv Wise-IoU

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(24)