首页|基于不同天气环境下的农作物害虫检测

基于不同天气环境下的农作物害虫检测

扫码查看
为提高自然环境下农作物害虫检测,实现综合治理的目的,目前传统机器视觉技术较难对其有效的检测.利用超G绝对值法将彩色图像序列进行灰度转换,实现害虫与背景分离.将获得的视频图像序列利用天气类型识别算法,设计满足不同天气环境下的害虫检测自适应阈值系数δ,并将其与最大类间方差法进行融合,实现害虫检测.实验结果表明,获得的害虫检测算法能有效消除噪声,提取害虫信息的效果较好,该方法可为智能视频监控中的害虫检测分析提供新思路.
Detection of crop pests under different weather conditions
In order to improve the detection of crop pests in the natural environment and realize the significance of comprehen-sive management,it is currently difficult for traditional machine vision technology to detect them effectively.In this paper,the super-G absolute value method is used to convert the color image sequence into grayscale to realize the separation of pests from the background.The obtained video image sequence is used with the weather type recognition algorithm to design an adaptive thresh-old coefficient δ for pest detection in different weather environments,and it is fused with the maximum inter-class variance method to realize pest detection.The experimental results show that the obtained pest detection algorithm can effectively eliminate noise and has a good effect of extracting pest information.This method can provide new ideas for pest detection and analysis in intelligent video surveillance.

pests detectionsuper G absolute valueweather type recognition algorithmadaptive threshold coefficient δ

胡常俊、夏红红、刘杰

展开 >

茅台学院教务处,仁怀 564500

茅台学院酿酒工程自动化系,仁怀 564500

害虫检测 超G绝对值 天气类型识别算法 自适应阈值系数δ

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(24)