首页|基于改进哈里斯鹰优化算法仓储机器人全局路径规划探究

基于改进哈里斯鹰优化算法仓储机器人全局路径规划探究

扫码查看
研究旨在探讨基于改进哈里斯鹰优化算法的仓储机器人全局路径规划问题,以提高仓储环境中机器人的导航效率.研究人员通过引入Tent混沌映射、逃逸能量调控机制以及柯西反学习变异策略,对传统哈里斯鹰优化算法进行了改进,以此来提升算法的搜索能力以及全局优化性能.研究人员在提出改进TCLHHO算法的基础上,通过标准测试函数对改进算法的性能进行了全面评估,比较了其与传统算法的优劣,并在仿真环境中应用改进算法进行仓储机器人路径规划.研究表明,改进后的TCLHHO算法在路径规划中表现出更优的收敛性以及更高的路径质量,相较于传统算法显著提高了规划效率.这一研究不仅为仓储机器人路径规划提供了有效的优化工具,还推动了智能物流系统的技术进步,对实际应用具有重要的实践意义.
Research on the global path planning of the storage robot based on the improved Harris Hawks optimization algorithm
The purpose of this study is to explore the global path planning of warehouse robots based on the improved Harris Eagle optimization algorithm,in order to improve the navigation efficiency of robots in the storage environment.By introducing Tent chaos mapping,escape star regulation mechanism and Cauchy anti-learning variation strategy,the researchers improved the tradi-tional Harris Hawks optimization algorithm,so as to improve the search ability and global optimization performance of the algo-rithm.On the basis of proposing the improved TCLHHO algorithm,the researchers comprehensively evaluated the performance of the improved algorithm through the standard test function,compared the advantages and disadvantages with the traditional algo-rithm,and applied the improved algorithm for the storage robot path planning in the simulation environment.The study shows that the improved TCLHHO algorithm shows better convergence and higher path quality in the path planning,which significantly im-proves the planning efficiency compared to the traditional algorithm.This research not only provides an effective optimization tool for the path planning of warehouse robots,but also promotes the technological progress of intelligent logistics system,which is of im-portant practical significance for practical application.

path planningmobile robotHarris Hawks optimization algorithm

肖维

展开 >

贵州思索电子有限公司,贵阳 550299

路径规划 移动机器人 哈里斯鹰优化算法

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(24)