首页|基于改进RBF神经网络的网络安全态势感知方法

基于改进RBF神经网络的网络安全态势感知方法

扫码查看
传统安全态势感知方法未考虑攻击概率,导致感知结果片面.为此,提出改进RBF神经网络的网络安全态势感知方法.利用网络爬虫采集网络数据,进行多源数据融合处理.融合后的数据经归一化处理,作为改进RBF神经网络的输入,计算攻击概率.分析网络流量数据,提取特征并降维,筛选出最具影响力的特征集.结合机器学习模型进行节点聚类分析,构建安全态势评分函数,计算网络安全态势值.对比实验显示,该方法能精准感知网络安全态势.
Network security situation awareness method based on improved RBF neural network
Traditional security situational awareness methods do not consider attack probability,resulting in one-sided percep-tion results.Therefore,an improved network security situational awareness method based on RBF neural network is proposed.Uti-lize web crawlers to collect network data and perform multi-source data fusion processing.The fused data is normalized and used as input for the improved RBF neural network to calculate the attack probability.Analyze network traffic data,extract features and re-duce dimensionality,and screen the most influential feature set.Combining machine learning models for node clustering analysis,constructing a security situation rating function,and calculating network security situation values.Comparative experiments show that this method can accurately perceive the network security situation.

improved RBF neural networkattack probabilitymulti-source fusionperception methodssituationnetwork security

刘彧

展开 >

陕西交通职业技术学院科技信息处,西安 710018

改进RBF神经网络 攻击概率 多源融合 感知方法 态势 网络安全

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(24)