首页|面向结构化数据的数据湖增量计算优化探究

面向结构化数据的数据湖增量计算优化探究

扫码查看
旨在优化面向结构化数据的数据湖中的增量计算,通过深入探讨SHUFFLE机制及数据倾斜问题,以提高计算效率.详细分析了SHUFFLE机制及其在Spark中的数据倾斜现象,指出数据倾斜会严重影响任务的执行时间以及资源利用率.在此基础上,针对小文件问题进行剖析,探讨了小文件对数据处理性能的负面影响.为应对这些挑战,提出了基于Spark并行计算、HDFS分布式存储的优化方案,这些算法旨在减少数据倾斜并优化数据存储以及处理流程.研究结果表明,这些优化方案显著提升了数据湖中增量计算的效率,降低了计算资源的消耗,并增强了系统的整体性能.
Increment calculation and optimization of data lake for structured data
This study aims to optimize the incremental calculation in the data lake for structured data,and to improve the com-putational efficiency by deeply exploring the SHUFFLE mechanism and the data tilt problem.In this study,the staff analyzed the SHUFFLE mechanism and its data tilt phenomenon in Spark in detail,and pointed out that the data tilt can seriously affect the task execution time and resource utilization.On this basis,the problem of small files is analyzed,and the negative impact of small files on data processing performance is discussed.To meet these challenges,optimization solutions based on Spark parallel computing and HDFS distributed storage.These algorithms designed to reduce data tilt and optimize data storage and processing process.The results shows that these optimization schemes significantly improve the efficiency of incremental computing in data lakes,reduce the consumption of computing resources,and enhance the overall performance of the system.

data lakeaccess performancedata partition

蒋永红

展开 >

贵州思索电子有限公司,贵阳 550299

数据湖 存取性能 数据分区

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(24)