首页|基于CNN-Informer模型的中长期风电功率预测方法

基于CNN-Informer模型的中长期风电功率预测方法

扫码查看
针对中长期风电预测功率中存在不确定性隐患的问题,提出了一种基于CNN-Informer的方法.该方法利用卷积神经网络(CNN)提取风电数据的长期序列特征和趋势,结合Informer模型进行风电功率的预测.首先通过对风电场采集的实际风电数据采用随机森林填补法修正数据中的缺失值和异常值,然后使用皮尔逊相关系数分析筛选出影响风电功率的关键因素,最后进行实验验证与结果分析.实验结果表明,与单纯的Informer模型相比,提出的CNN-Informer模型在均方根误差(RMSE)和决定系数(R2)等评价指标上表现出更优的性能,证明了该方法在提高中长期风电功率预测精度方面的有效性.未来的研究可以进一步探索模型在不同条件下的适应性以及引入新技术来继续提升预测精度.
Medium-to long-term wind power forecasting method based on the CNN-Informer model
To address the uncertainty issues in medium-to long-term wind power forecasting,a method based on the CNN-Informer model is proposed.This method utilizes convolutional neural networks(CNN)to extract long-term sequence features and trends from wind power data,combined with the Informer model for power prediction.The main process of the study involves first correcting missing values and outliers in the collected wind power data using a random forest imputation method.Then,the Pearson correlation coefficient is used to analyze and identify key factors influencing wind power.Finally,experimental validation and result analysis are conducted.The experimental results show that the proposed CNN-Informer model performs better in evaluation metrics such as Root Mean Square Error(RMSE)and R2 compared to the standalone Informer model,demonstrating the effectiveness of this method in improving the accuracy of medium-to long-term wind power forecasting.Future research can further explore the model's adaptability under different conditions and introduce new technologies to continue enhancing prediction accuracy.

medium-to long-term wind power forecastingInformer modelconvolutional neural network(CNN)

万毅斐、张德艺、王晨浩

展开 >

华北水利水电大学信息工程学院,郑州 450000

中长期风电功率预测 Informer模型 卷积神经网络(CNN)

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(24)