首页|基于点云的机器人抓取检测方法研究

基于点云的机器人抓取检测方法研究

扫码查看
针对非结构化场景中机器人的抓取任务提出一种抓取位姿检测方法,首先对目标点云进行均匀采样得到初始抓取点,并通过PCA方法建立各抓取点的局部坐标系.然后,根据二指夹持器参数确定抓取位姿,使用位姿搜索策略扩充候选抓取位姿.接着,将每个候选抓取位姿对应的夹持器闭合区域的点云送入PointNet构建的抓取质量评估网络进行评估,筛选候选抓取位姿,得到较高质量的抓取位姿.最后,在ros平台上搭建机器人抓取仿真平台并进行实验验证.证明提出的方法可以在目标点云上生成抓取位姿,并可以稳定地完成处理单个或多个随机放置的未知物体的抓取任务.
Research on robot grasping detection method based on point cloud
This paper proposes a method for detecting the grasping pose of unknown objects in unstructured scenes.Firstly,the initial grasping points are obtained by uniformly sampling the point cloud of the scene,and the local coordinate system of each grasping point is established based on the PCA method.Then,the grasping pose is determined according to the parame-ters of the two-finger gripper,and the candidate grasping poses are expanded using a pose search strategy.Next,the point cloud of the gripper closing area corresponding to each grasping pose is extracted,and the candidate poses are filtered through a grasp quality evaluation network to output poses with higher scores.Finally,a robot grasping simulation platform is built on ros platform for experimental verification.Experimental results show that the proposed method can generate stable grasping poses on the point cloud of the target object,and can complete grasping tasks of single or multiple randomly placed unknown objects in a simulated environment.

unstructureddetecting the grasping posequality evaluation networksimulation

李鑫、李彩红、张正

展开 >

长安大学 工程机械学院,陕西 西安 710064

非结构化 抓取检测 抓取质量评估网络 仿真

2024

现代机械
贵州省机电研究设计院,贵州省机械工程学会

现代机械

影响因子:0.172
ISSN:1002-6886
年,卷(期):2024.(1)
  • 9