首页|求解电动汽车车辆路径问题的双种群协同进化算法

求解电动汽车车辆路径问题的双种群协同进化算法

扫码查看
绿色物流领域新兴的电动汽车车辆路径问题,由于需要对车辆路径和充电决策同时优化,搜索空间急剧增大,且需要同时满足容量和电量双重约束,现有方法难以快速找到质量较优的可行解.为此,提出一种基于双种群的协同进化算法,通过忽略电量约束构造简单带容量约束的车辆路径问题,辅助原始复杂问题的快速求解.为实现其间信息交互,设计一种基于改进距离邻接矩阵的解序列特征表示方法,旨在同时获取客户访问顺序和车辆指派信息;利用降噪自编码器构建 2 个问题解之间转换关系,以实现问题域间知识迁移.将该算法与目前常用的 3 种启发式算法和 2 种进化算法在不同规模测试集上进行对比,试验结果表明所提算法具有更快收敛速度且所获解集具有更好收敛性.
Dual-population co-evolutionary algorithm for solving electric vehicle route problems
The emerging field of green logistics presents a challenge in the form of electric vehicle routing.This issue requires simultaneous optimization of routing and charging decisions,significantly expanding the search space.Moreover,solutions must comply with capacity and power constraints,making it difficult to quickly find feasible solu-tions using existing methods.To address these challenges,we propose a dual population-based co-evolutionary al-gorithm.This approach involves constructing a simpler problem to expedite the solution process for the original,more complicated problem.To facilitate information exchange between these two heterogeneous problems,we designed a solution representation method.This method,which is based on an improved distance adjacency matrix,allows to ob-tain information on customer visits and vehicle assignments.Subsequently,we employed a commonly used denoising autoencoder to establish the transformation relationship between solutions from these two problems.This step enables knowledge transfer between the two problem domains.Our proposed algorithm was tested against three heuristic meth-ods and two evolutionary algorithms on test sets of different sizes.The experimental results show that the proposed al-gorithm not only converges faster but also yields solutions with superior convergence.

green logisticselectric vehicle routing problemelectricity constrainttwo-populationevolutionary al-gorithmdistance adjacency matrixdenoising autoencoderknowledge transfer

王朝、秦芳、刘蓉蓉、江浩

展开 >

安徽大学 人工智能学院, 安徽 合肥 230601

绿色物流 电动汽车车辆路径问题 电量约束 双种群 进化算法 距离邻接矩阵 降噪自编码器 知识迁移

国家自然科学基金国家自然科学基金

6210600262372001

2024

智能系统学报
中国人工智能学会 哈尔滨工程大学

智能系统学报

CSTPCD北大核心
影响因子:0.672
ISSN:1673-4785
年,卷(期):2024.19(2)
  • 26