首页|基于属性图的社区搜索模式及其分类体系

基于属性图的社区搜索模式及其分类体系

扫码查看
当前在属性图中的社区搜索方法较多、类型繁杂,没有系统的分类方式,约束了社区搜索的应用。为明确属性图社区搜索的类别,对属性图社区搜索分类方法进行研究。首先,首次提出属性图社区搜索模式的概念,深入分析属性图社区搜索模式之间存在的联系,提出属性图社区搜索模式的等价、从属、交叉、全异 4 种关系;其次,以搜索模式的输入图属性、输出图拓扑结构和各属性图社区搜索模式的实际意义为基础,构建两层分类体系,第 1 层是由输入属性图相同的模式集合构成的集族,这里的输入属性图包括时序、空间、关键字、权值、空属性图,第 2 层是由输出图拓扑结构及实际意义定位到的每一个具体的属性图社区搜索模式;然后,针对第 2 层中每一种模式,给出对应社区搜索算法的对比分析结果;最后,对所有属性图社区搜索模式的特性集中分析。总体而言,属性图社区搜索模式不仅为理解和分析复杂网络结构提供有力工具,也为解决实际问题提供新的视角和方法。
Community search schemata and their classification systems based on attribute graphs
At present,there are many community search methods in the attribute graph,and there is no systematic classi-fication method,which restricts the application of community search.In order to clarify the category of community search in attribute graph,the classification method of attribute community search is studied.Firstly,the concept of at-tribute community search schema is proposed to analyze the relationship between attribute community search schemata in depth,proposing four relationships of community search mode of attribute graph:equivalence,affiliation,intersected and exclusion.Secondly,a two-layer classification system is constructed based on the input graph attributes of the search mode,the topology of the output graph and the practical significance of the search mode of each attribute com-munity.The first layer is a family of sets composed of the same set of schemata in the input attribute graph.The input at-tribute graph here includes sequence,space,keyword,weight,and empty attribute graph.The second layer is each spe-cific community search schema located by the topology and practical meaning of the output graph.Then,the comparat-ive analysis result of corresponding community search algorithm is given for each schema in the second layer.Finally,the characteristics of all the community search modes of attribute graphs are analyzed centrally.Overall,the attribute graph community search pattern not only provides a powerful tool for understanding and analyzing complex network structures,but also provides a new perspective and method for solving practical problems.

graph theoryattributed graphcommunity searchschemacohesivenesstopologyrelationcommunity search algorithm

赵丹枫、孔万仔、黄冬梅、刘国华

展开 >

上海海洋大学 信息学院,上海 201306

上海电力大学,上海 200090

东华大学 计算机科学与技术学院,上海 201620

图论 属性图 社区搜索 模式 内聚性 拓扑结构 关系 社区搜索算法

国家自然科学青年基金项目国家自然科学基金面上项目

4210619061972241

2024

智能系统学报
中国人工智能学会 哈尔滨工程大学

智能系统学报

CSTPCD北大核心
影响因子:0.672
ISSN:1673-4785
年,卷(期):2024.19(4)