现代科学仪器2024,Vol.41Issue(1) :176-181.

基于灰色模型的工程造价指数组合预测模型构建

Construction of a Combined Prediction Model for Engineering Cost Index Based on Grey Model

李昌建 于海波
现代科学仪器2024,Vol.41Issue(1) :176-181.

基于灰色模型的工程造价指数组合预测模型构建

Construction of a Combined Prediction Model for Engineering Cost Index Based on Grey Model

李昌建 1于海波1
扫码查看

作者信息

  • 1. 江苏省送变电有限公司,江苏南京 210028
  • 折叠

摘要

随着大数据及人工智能的发展,构建合理的工程造价指数是工程造价发展的必然趋势.研究基于灰色预测模型和梯度提升决策树(Gradient Boosted Decision Tree,GBDT)预测模型,结合Stacking策略进行模型的组合,得到 GM-GBDT 工程造价指数组合预测模型.对模型的性能进行分析,发现三种模型中预测性能从高到低依次是GM-GBDT集成预测模型、GBDT预测模型、GM(1,N)预测模型;GM-GBDT集成预测模型对 2020年 1-12月工程造价指数的真实值和预测值的相对误差为 3.86%-1.05%,平均相对误差为 2.60%.实证分析结果表明,GM-GBDT联合模型,具有更好的整体预测能力,能够在GM(1,N)和GM的基础上,进一步提升预测准确率.

Abstract

With the development of big data and artificial intelligence,constructing a reasonable engineering cost index is an inevitable trend in the development of engineering costs.Research is based on the combination of grey prediction model and Gradient Boosted Decision Tree(GBDT)prediction model,combined with the Stacking strategy to obtain the GM-GBDT engineering cost index combination prediction model.Analyzing the performance of the models,it was found that among the three models,the highest to lowest predictive performance was the GM-GBDT integrated prediction model,GBDT prediction model,and GM(1,N)prediction model;The relative error between the actual and predicted values of the engineering cost index from January to December 2020 using the GM-GBDT integrated prediction model is 3.86%-1.05%,with an average relative error of 2.60%.The empirical analysis results indicate that the GM-GBDT joint model has better overall prediction ability and can further improve prediction accuracy on the basis of GM(1,N)and GM.

关键词

灰色模型/工程造价指数/组合预测/GM-GBDT/集成预测

Key words

Grey model/Engineering cost index/Combination forecasting/GM-GBDT/Integrated prediction

引用本文复制引用

出版年

2024
现代科学仪器
中国分析测试协会

现代科学仪器

CSTPCD
影响因子:0.329
ISSN:1003-8892
参考文献量16
段落导航相关论文