首页|基于非参数检验结合深度学习的财务风险预警研究

基于非参数检验结合深度学习的财务风险预警研究

扫码查看
传统财务风险预警存在数据处理困难、数据单一等问题。研究为了解决这些问题,提出了一种基于符号秩和检验的多层的前馈神经网络(Back Propagation,BP)财务风险预警系统模型。该模型采用BP神经网络对财务数据进行预测,并采用符号秩和检验方法来识别财务风险的类型和大小。通过模型算法与循环神经网络(Recurrent Neural Network,RNN)、卷积神经网络(Convolutional Neural Networks,CNN)进行对比。结果表明,模型算法的受试者特征曲线(Receiver Operating Characteristic Curve,ROC)曲线线下面积为 0。86、平均绝对误差平均值和检测率平均值分别为 2。67%、86。13%,均为最优值,且模式算法在训练集中的预警能力为 80。7%。证实了研究提出的模型算法能够提高财务风险预警的准确性和可靠性,有效的对财务风险进行预测,为财务风险管理和决策提供重要的参考。
Research on financial risk early warning based on nonparametric test combined with deep learning
Traditional financial risk early warning has problems such as data processing difficulties and single data.In order to solve these problems,the study proposes a multilayer feed-forward neural network(Back Propagation,BP)financial risk early warning system model based on the symbolic rank sum test.The model uses BP neural network to predict financial data and symbolic rank sum test to identify the type and size of financial risks.The model algorithm was compared with Recurrent Neural Network(RNN)and Convolutional Neural Networks(CNN).The results show that the area under the line of the Receiver Operating Characteristic Curve(ROC)curve of the model algorithm is 0.86,the mean absolute error average and the detection rate average are 2.67%and 86.13%,respectively,which are the optimal values,and the model algorithm's early warning capacity in the training set is 80.7%.It is confirmed that the model algorithm proposed in the study can improve the accuracy and reliability of financial risk early warning,effectively predict financial risks,and provide an important reference for financial risk management and decision-making.

Symbolic rank sumBP Neural NetworkFinancial DataRisk Warning

张晓丹

展开 >

东营银行,山东东营 257091

符号秩和 BP神经网络 财务数据 风险预警

2024

现代科学仪器
中国分析测试协会

现代科学仪器

CSTPCD
影响因子:0.329
ISSN:1003-8892
年,卷(期):2024.41(1)
  • 17