首页|贝叶斯网络结构和参数的电力企业生产风险技术分析

贝叶斯网络结构和参数的电力企业生产风险技术分析

扫码查看
安全生产是企业持续经营的基础,本文提出一种基于贝叶斯网络理论的识别生产风险关键因素、提炼生产风险管理专家知识的分析方法。首先构建一套包括 3 个一级指标、12 个二级指标、34 个三级指标的预警评价指标体系,采用 K2 算法进行贝叶斯网络结构和参数学习,形成生产风险预警模型,进而应用该模型对某企业进行风险评价、敏感性分析和致因链分析。实验表明,所构建的贝叶斯网络生产风险预警模型能有效识别企业生产过程中的关键风险因素,为企业生产风险管理的动态监控和持续改进提供了新的思路和方法。
Bayesian Network Structure and Parameter Analysis for Production Risk in Power Enterprises
Ensuring the safety of production processes is crucial for a company's continued success.This study introduces a Bayesian Network theory-based method to identify critical factors in production process risks and extract expert risk management insights.It constructs a warning indicator framework with 3 primary,12 secondary,and 34 tertiary indicators.Utilizing the K2 algorithm,this method enhances the learning of structures and parameters within the Bayesian Network,leading to a comprehensive production process risk warning model.Applied in a case study,this model enables detailed risk assessment,sensitivity analysis,and causal chain exploration for a specific enterprise.The results confirm the method's effectiveness in building Bayesian networks,identifying essential risk factors,and extracting expert insights,thus providing innovative strategies and tools for the dynamic monitoring and continuous enhancement of risk management practices in production processes.

Bayesian NetworkPower EnterpriseProduction Process Risk

杨成月、于宙、赵园园、陈常龙

展开 >

国家电网有限公司大数据中心,北京 100032

北京国电通网络技术有限公司,北京 100070

贝叶斯网络 企业 生产风险

2024

现代科学仪器
中国分析测试协会

现代科学仪器

CSTPCD
影响因子:0.329
ISSN:1003-8892
年,卷(期):2024.41(1)
  • 19