首页|基于深度预警模型的智能财务共享管理技术研究

基于深度预警模型的智能财务共享管理技术研究

扫码查看
传统企业线性财务风险预警技术已经无法满足于企业发展需要,为了解决智能财务风险预警不足问题,分析企业财务风险并构建风险指标体系.同时为了挖掘数据之间复杂的关系,采用卷积神经网络(Convolutional Neural Networks,CNN)识别风险特征,通过长短时记忆网络(Long Short-Term Memory,LSTM)来处理信息读取与信息存储之间的依赖关系.同时引入滑动窗口算法对预警模型进行优化.在财务风险预测ROC结果预测中,所提出的模型在按年划分的财务预警数据中预警训练效果最好,AUC 值为 0.896.在发展能力与偿还能力风险检测中,所提出的模型风险检测效果优于别的模型,准确率分别为 96.65%与 95.75%.由此可见,所提出的风险模型具有出色应用效果,为企业智能财务的应用与风险监管提供技术参考.
Research on Intelligent Financial Sharing Management Technology Based on Deep Warning Model
Traditional linear financial risk warning technology for enterprises can no longer meet the needs of enterprise development.In order to solve the problem of insufficient intelligent financial risk warning,it is necessary to analyze enterprise financial risks and construct a risk indicator system.At the same time,in order to explore the complex relationships between data,Convolutional Neural Networks(CNN)are used to identify risk features,and Long Short Term Memory(LSTM)networks are used to handle the dependency relationship between information reading and information storage.Simultaneously introducing sliding window algorithm to optimize the warning model.In the prediction of ROC results in financial risk prediction,the proposed model has the best warning training effect among financial warning data divided by year,with an AUC value of 0.896.In the risk detection of development ability and repayment ability,the proposed model has better risk detection performance than other models,with accuracy rates of 96.65% and 95.75%,respectively.From this,it can be seen that the proposed risk model has excellent application effects,providing technical references for the application and risk supervision of enterprise intelligent finance.

Deep warningIntelligent financeRisk indicator systemConvolutional networkLong and Short Term Networks

袁园、许晔

展开 >

华东疗养院,江苏无锡 214065

深度预警 智能财务 风险指标体系 卷积神经网络 长短时记忆网络

2024

现代科学仪器
中国分析测试协会

现代科学仪器

CSTPCD
影响因子:0.329
ISSN:1003-8892
年,卷(期):2024.41(3)